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A B S T R A C T

We study the structure of a stationary and axisymmetric charge-deficient region (or potential

gap) in the outer magnetosphere of a spinning neutron star. Assuming the existence of global

current flow patterns in the magnetosphere, the charge depletion causes a large electric field

along the magnetic field lines. This longitudinal electric field accelerates migratory electrons

and/or positrons to ultrarelativistic energies. These relativistic electrons/positrons radiate g-ray

photons by curvature radiation. These g -rays, in turn, produce yet more radiating particles

by colliding with ambient X-ray photons, leading to a pair production cascade in the gap.

The replenished charges partially screen the longitudinal electric field, which is self-

consistently solved together with the distribution of e^ and g -ray photons. We find the

voltage drop in the gap as a function of the soft photon luminosity. It is demonstrated that

the voltage drop is less than 3 � 1013 V when the background X-ray radiation is as luminous

as Vela. However, this value increases with decreasing X-ray luminosity and attains

3 � 1015 V when the X-ray luminosity is as low as LX � 1031 erg s21.

Key words: magnetic fields ± pulsars: general ± gamma-rays: theory.

1 I N T R O D U C T I O N

In the past 20 years there has been increasing interest in the study

of high-energy emission from the pulsar magnetosphere. Attempts

to model the production of high-energy radiation have concen-

trated on two scenarios: polar cap models with emission altitudes

of ,104 cm to several neutron star radii over a pulsar polar cap

surface (Harding, Tademaru & Esposito 1978; Daugherty &

Harding 1982, 1996; Dermer & Sturner 1994; Sturner, Dermer &

Michel 1995; also see Scharlemann, Arons & Fawley 1978 for the

slot gap model) and outer gap models with acceleration occurring

in the open field zone located near the light cylinder (Chen, Ho &

Ruderman 1986a,b, hereafter CHR; Chiang & Romani 1992,

1994; Romani 1996). Both of these pictures have had some

success in reproducing global properties of the observed emission.

However, there is an important difference between these two

models. A polar gap accelerator releases very little angular

momentum, while an outer gap one could radiate angular

momentum efficiently. More specifically, the total angular

momentum loss rate must equal the energy loss rate divided by

the angular velocity of the star, implying an average location of

energy loss on the light cylinder (Cohen & Treves 1972; Holloway

1977; Shibata 1995) with distance from the rotation axis given by

rLC � c

V
� 108:5V21

2 cm; �1�

where V2 denotes the angular frequency of the neutron star, V, in

units of 102 rad s21, and c denotes the speed of light.

In the aligned models, an electron convection current is pictured

as flowing out from the polar regions, crossing the field lines

beyond the light cylinder, and returning to the star at lower

latitudes in the poloidal plane (Fig. 1). The poloidal current is

dissipation-free well within the light cylinder; however, it is likely

to become dissipative beyond the light cylinder (Mestel & Shibata

1994). In any case, the argument on angular momentum loss tells

us that most of the energy and angular momentum are released

beyond the light cylinder; the particle acceleration (pulsar wind

formation) and photon emission take place mainly beyond the

light cylinder (Shibata 1995). As a result, the poloidal current

circuit closes beyond the light cylinder (Fig. 1). The steady spin-

down of the star is, therefore, linked to the problem of the

returning current.

On these grounds, the purpose here is to explore a little further

into a model of an outer gap, which is located near the light

cylinder. If the outer magnetosphere is filled with a plasma so that

the space charge density r e is equal to the Goldreich±Julian

density [rGJ ; VBz=�2pc� in the non-relativistic limit], then the

field-aligned electric field vanishes, where Bz is the component of

the magnetic field along the rotational axis. However, the

depletion of charge in the Goldreich±Julian model in a region
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where it could not be resupplied may cause a vacuum region to

develop. Holloway (1973) pointed out the possibility that a region

that lacks plasma is formed around the surface on which rGJ

changes its sign.

CHR developed a version of an outer magnetospheric g-ray

emission zone in which acceleration in the Holloway gaps above

the null surface brought particles to large Lorentz factors (,107:5�.
These primary charges produce high-energy g-ray photons, some

(or most) of which collide with soft photons to materialize as

secondary pairs. The resulting secondary charges suffer strong

synchrotron losses to emit secondary radiation. The secondary

photons, in turn, materialize as low-energy tertiary pairs, which

were argued to produce the soft tertiary photon bath needed for the

original gap closure.

However, no study has ever tried to reveal the spatial structure

of the acceleration field consistently with the plasma distributions.

CHR assumed a uniform potential drop (or used a particular

solution of the vacuum Poisson equation), so that the acceleration

field was ,Vgap=rLC, where Vgap is the voltage drop in the gap.

Subsequently, Romani (1996) assumed its functional form as

,r21 in the outer gap and computed g -ray pulse profiles and

spectra. In polar cap models, on the other hand, Michel (1991,

1993) investigated the formation of dense charged bunches that

can produce coherence at radio frequencies, and analysed the time

development of pair-production discharges assuming a uniform

acceleration field.

In this paper, we explicitly solve the spatial distribution of Ek
together with those of particles (e^) and g-ray distribution

functions, by solving the Poisson equation and the Boltzmann

equations of e^ and g-ray photons self-consistently. This method

was originally examined by Beskin, Istomin & Par`ev (1992) and

developed more quantitatively by Hirotani & Okamoto (1998) in

the investigation of a pair production cascade in a black hole

magnetosphere. In this work, g-ray photons are supposed to be

produced by curvature radiation, and particles by photon±photon

pair production. For simplicity, we assume an aligned rotator, the

rotational axis of which is parallel to the magnetic dipole moment,

before analysing the more difficult but realistic problem of oblique

rotators. For such an aligned rotator, rGJ , 0 on the polar side of

the null surface, on which rGJ vanishes, and rGJ . 0 on the

equatorial side.

For simplicity and for ease of specifying some parameters, we

assume axisymmetry. In the previous paragraphs, a model with a

current circuit running through the outer gap has been outlined

during use of the axisymmetric model by Mestel & Shibata

(1994). However, some authors think that aligned rotators are

inactive with a static electrosphere (Michel 1998), and this issue is

controversial. In any case, the present model is generic in the

sense that what we consider is the dynamics around the null

surface when the current pierces through it; therefore, the result is

applicable to oblique rotators.

In the next section, we discuss the physical processes of pair

production cascades in the outer magnetosphere of a pulsar and

present basic equations describing the system. We then solve these

equations in Section 3 and reveal the quantitative characteristics of

pair production cascades. In the final section, we point out

essential differences of our model from CHR and discuss the

validity of the assumptions made in this paper.

2 PA I R P R O D U C T I O N C A S C A D E I N T H E

O U T E R G A P

We first reduce the Poisson equation into a one-dimensional form

in Section 2.1. Next, we present a one-dimensional description of

e^ number densities in Section 2.2, and introduce a `grey'

approximation for the g-ray distribution in Section 2.3.

2.1 Reduction of the Poisson equation

To simplify the geometry, let us introduce a rectilinear

approximation for a region around the null surface. Suppose that

the magnetic field lines are the straight lines parallel to the x-axis

(Fig. 2). x is an outwardly increasing coordinate along a magnetic

field line, while y designates azimuth. We approximate the null

surface by the z-axis �x � 0�. The y-dependence does not appear

under the assumption of axisymmetry. By using this rectilinear

coordinate, the Poisson equation for the non-corotating electric

potential, F, becomes

2
2

x2
1

2

z2

� �
F�x; z� � 4p�e�N1 2 N2�2 rGJ�; �2�

where N1 and N2 refer to the spatial number densities of e1 and

e2, respectively; e refers to the magnitude of the charge on the

electron.

If the transfield thickness of the gap, D', is sufficiently large

compared with the longitudinal thickness of the gap, H, then we

can neglect the z-dependence of quantities, that is 2=z2 � 0. As

will be shown later, however, D', which is determined by

quantum electrodynamic processes, can be as large as the

longitudinal thickness. To consider these effects, we use an

approximation 2F=z2 � 2F=D2
' (Michel 1974). This approxi-

mation stands for the fact that the accelerating region is bounded

on z � 0 and z � D' by the side walls on which F and hence Ek
vanish.
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Figure 1. A schematic figure (side view) of a global current flow in the

magnetosphere of an aligned rotator.

Figure 2. Rectilinear approximation of the outer gap. The null surface is

approximated by the z-axis �x � 0�. The y-axis, which designates azimuth,

is not depicted, to avoid complication.



56 K. Hirotani and S. Shibata

For the first-order approximation, the primary effect of field

line curvature appears in the x-dependence of rGJ. Therefore, we

adopt the Taylor expansion around the null surface, although we

are still in rectilinear coordinates. Thus we arrive at the following

Poisson equation in the first-order approximation:

2
d2F

dx2
� 2

F

D2
'

1 4p�e�N1 2 N2�2
rGJ

x

� �
0

x�; �3�

where the expansion coefficient of rGJ is evaluated at x � 0.

2.2 One-dimensional description of the particle distribution

The number densities of individual particle species, N^, follow

one-dimensional continuity equations with a source term that is

caused by the photon±photon pair production process. The most

effective assumption for the particle motion in the gap arises from

the fact that the velocity saturates immediately after their birth, in

the balance between the radiation reaction force and the electric

force. The reaction force is mainly caused by curvature radiation if

the gap is embedded in a moderate X-ray photon field, the energy

density of which satisfies UX , 106 erg cm23, such as those of

Vela, B1706-44, B1055-52 and Geminga. For higher photon

densities, such as for the Crab pulsar, the inverse Compton process

becomes the dominant process. We investigate such cases in

another paper (Hirotani & Shibata 1999, hereafter Paper II). If we

evaluate UX at the radius r � 0:67rLC, which is the intersection of

the null surface and the last open field line for an aligned rotator

(Fig. 3), and hence a presumed central region of the outer gap, we

obtain

UX � LX=�4p�0:67rLC�2c� � 6:0 � 104L33V
2
2 erg cm23; �4�

where L33 ; LX=�1033 erg s21� is a dimensionless X-ray lumin-

osity, LX.

Equating the electric force e|dF/dx| and the radiation reaction

force, we obtain the saturated Lorentz factor at each point as

follows:

G � 3R2
c

2e
j dF

dx
j1 1024

� �1=4

; �5�

where Rc is the radius of curvature. The term 1024 is added in the

parenthesis for a realistic treatment of the boundaries of the gap.

Near the boundaries, where the diminished electric field no longer

contributes to the force balance, the particles move almost freely

with G , 1024=104 � 106 with a modest radiation reaction, the

damping length of which is larger than the width of the boundary

layer.

As will be shown in Section 5, the pitch angles of particles are

essentially zero, because of Ek acceleration. Therefore, the

longitudinal velocities of particles become virtually ^c. This

simplifies the continuity equations of e^s significantly. Without

loss of any generality, we can assume that the electric field is

positive in the gap, in which e1s (or e2s) move outwards (or

inwards). In the rectilinear coordinate, their continuity equations

then become

1c
dN1

dx
�
�1

21
dkghp�jkgj�G�x; kg�; �6�

2c
dN2

dx
�
�1

21
dkghp�jkgj�G�x; kg�; �7�

where G refers to the distribution function of g-ray photons

having momentum kg along the x-coordinate. The angle-averaged

pair production redistribution function hp is defined by (Bere-

stetskii, Lifshitz & Pitaevskii 1989)

hp�jkgj� �
c

2

�1

21

dm

�emax
X

2mec=�12m�kg
deX

dNX

deX

sp�v�; �8�

sp�v� ;
3

16
sT�1 2 v2� �3 2 v4� ln 1 1 v

1 2 v
2 2v�2 2 v2�

� �
; �9�

v�jkgj; eX;m� ;

������������������������������������
1 2

2

1 2 m

mec

jkgjeX

;

s
�10�

where dNX is the number density of X-ray photons in the energy

interval between mec
2eX and mec2�eX 1 deX�; m is the cosine of

the colliding angle of the soft and the hard photons. The upper cut-

off energy of the X-ray field is designated as mec2emax
X .

2.3 Grey approximation

Let us turn to the discussion on g-ray distribution functions. The

spectrum of curvature of g-ray photons peaks near the frequency

0:5nc � 3G3c=�8pRc�, where Rc is the curvature radius of the field

line. As we shall see in Section 4.1, G , 107:4 holds in the gap;

therefore, we obtain 0:5hnc < 3 GeV. On the other hand, sub-GeV

curvature photons scarcely pair produce on a sub-keV back-

ground. Therefore, most of the g-ray photons that can materialize

are distributed in a relatively limited energy range of several GeV.

On these grounds, we adopt a `grey' approximation instead of

considering a detailed g-ray spectrum in this paper. Such a

simplified treatment will not be allowed if we consider inverse

Compton scatterings as a g-ray production process.

First, we derive the continuity equations of g-ray photons. In

the rectilinear approximation, g-ray photons are considered to be

directed only in the ^x direction, which coincides with the

direction of their initial momenta. In other words, their

momentum kg equals |kg | for outwardly propagating g-ray

photons while it equals 2jkgj for inwardly propagating ones. In

general, their propagation direction deviates, however, from the

curved field lines (Fig. 3). Nevertheless, the pair production rate,

which essentially governs the gap structure, does not depend on

the g-ray propagation direction, provided that the background

q 1999 RAS, MNRAS 308, 54±66

Figure 3. A side view of a hypothetical outer magnetospheric gap in which

a pair production cascade takes place. g-ray photons are produced by

curvature radiation. Their initial momentum is along the local poloidal

magnetic field line, and deviates as they propagate.
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radiation field is isotropic. In the present paper, we thus neglect

minor details about transfield components of g-ray momenta and

approximate the g -ray continuity equations by the one-dimen-

sional form (see Appendix)

dG1

dx
� 2khplG1 1

16pe2

9hRC

GN1; �11�

dG2

dx
� khplG2 2

16pe2

9hRC

GN2: �12�

Secondly, in accordance with the introduction of the grey

approximation, let us rewrite the particle continuity equations (6)

and (7) in the following forms:

c
dN1

dx
� khpl�G1�x�1 G2�x��; �13�

c
dN2

dx
� 2khpl�G1�x�1 G2�x��: �14�

The migrating e^s and the g-ray photons in the gap are

described by differential (3) and (11)±(14).

3 D I M E N S I O N L E S S F O R M U L AT I O N

To show that the system is described by a few parameters that

have reasonable meanings, we non-dimensionalize the basic

equations in Section 3.1 and present suitable boundary conditions

in Section 3.2.

3.1 Dimensionless basic equations

In the potential gap, a characteristic length-scale in Ek accelera-

tion is c/vp, where the plasma frequency vp is defined by

vp �
����������������������
4pe2

me

VB

2pce

s
� 1:875 � 107V

1=2
2 B

1=2
5 > rad s21; �15�

where V2 ; V=�102 rad s21�. Evaluating B at the null surface of

an aligned rotator, we obtain

B5 ;
B

105 G
� 1:76m30V

2
2; �16�

where m30 is the nondimensional dipole moment in units of

1030 G cm3. The length-scale c/vp characterizes the thickness of the

boundary layers where Ek vanishes and the wavelength of excited

waves. There is, indeed, another characteritic length-scale, the pair

production mean free path, lp. However, lp depends on the

photon field and the pair production processes under considera-

tion. Therefore, we normalize the length-scales by c/vp in this

paper, leaving room for future investigation of the boundary layers

and wave excitation.

First, introducing the following two dmensionless quantities,

j ;
vp

c
x � 6:25 � 1024V

1=2
2 B

1=2
5 x �17�

and

D' ;
vp

c
D'; �18�

and assuming an aligned rotator, we can simplify the Poisson

equation (3) to the form

Ek � 2
dw

dj
�19�

and

dEk
dj
� 2

w

D2
'

1 n1�j�2 n2�j�2 Aj; �20�

where the dimensionless electrostatic potential and electric field

are defined by

w�j� ;
eF�x�
mec2

; �21�

Ek ; 2
dw

dj
� e�2dF=dx�

mecvp

�22�

� 3:12 � 1025 2dF=dx

V=m

� �
1�����������
V2B5

p ; �23�

and the particle densities are normalized in terms of the

Goldreich±Julian density

n^�j� ;
2pce

VB
N^�x�; �24�

moreover, A is the dimensionless expansion coefficient of rGJ at

the null surface. The value of A can be estimated as

A ;
c

vp

2pc

VB

rGJ

x

� �
0

<
c

vpRc

� 1:1 � 1025V
1=2
2 B

21=2
5

Rc

0:5rLC

� �21

: �25�

Here, RC � 0:5rLC gives a good estimate.

Secondly, we can rewrite the continuity equations of particles

(13) and (14) as

dn1

dj
� ĥp�g1�j�1 g2�j��; �26�

dn2

dj
� 2ĥp�g1�j�1 g2�j��; �27�

where

ĥp ; khpl=vp <
c

vp

� 0:2sT � NX

� 2:2 � 1028L33V
3=2
2 B

21=2
5

mec2eX

0:4 keV

� �21

; �28�

the g-ray spatial number densities are normalized in the same way

as n^,

g1�j� ;
2pce

VB
G1�x�; �29�

g2�j� ;
2pce

VB
G2�x�: �30�

We implicitly assumed here that the soft photons are supplied by

the surface blackbody radiation of temperature kT , 0:15 keV,

which is applicable for Vela, B1055-52 and Geminga. A com-

bination of equations (26) and (27) gives the current conservation

law,

j0 ; n1�j�1 n2�j�: �31�

Here, j0 � 1:0 indicates that the current density is equal to a

typical Goldreich±Julian current density, VB/(2p).

Thirdly and finally, the g-ray continuity equations (11) and (12)
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become

dg1

dj
� 2ĥpg1 1 hcn1; �32�

dg2

dj
� ĥpg2 2 hcn2; �33�

where

hc ;
16pe2

9vphRC

G � 4:3 � 1022 G

107

�������
V2

B5

s
�34�

denotes the number of g-ray photons emitted by a single e1 or e2

in the normalization length-scale c/vp along the field line. As h c

is much larger than hÃ p for G @ 10, g-ray production resulting

from curvature radiation dominates the absorption because of g±g
collisions in the gap.

3.2 Boundary conditions

To solve the six basic equations (19), (20), (26), (27), (32) and

(33), we must adopt appropriate boundary conditions. We first

consider the conditions at the inner boundary j � j1.

For one thing, the inner boundary is defined so that Ek vanishes

there. Therefore, we have

Ek�j1� � 0: �35�
It is noteworthy that condition (35) is consistent with the stability

condition at the plasma±vacuum interface if the electrically

supported magnetospheric plasma is completely charge-separated,

i.e. if the plasma cloud at j , j1 is composed of electrons alone

(Krause-Polstorff & Michel 1985a,b). We assume that the

Goldreich±Julian plasma gap boundary is stable with Ek � 0 at

the boundary, j � j1.

Furthermore, we assume that the inner boundary is grounded to

the star surface, that is we put

w�j1� � 0: �36�
What is more, we impose for simplicity the condition that no g-

rays enter from the outside of the gap, that is

g1�j1� � 0: �37�
One final point is that we can impose conditions on n1 and n2. If

the negatively charged cloud at x , x1 is composed of pure

electrons, then there will be no positrons penetrating into the gap

at j � j1. Therefore, we assume

n1�j1� � 0; �38�
which yields, with the help of the charge conservation law (31),

n2�j1� � j0: �39�
Let us next consider the conditions at the outer boundary. The

outer boundary, j � j2, is defined so that Ek vanishes again, that is

Ek�j2� � 0: �40�
In the same manner, at j � j1, we impose both

g2�j2� � 0 �41�
and

n2�j2� � 0: �42�

We have eight boundary conditions in total (35)±(42) for the six

differential equations; thus two extra boundary conditions must be

compensated for by making the positions of the boundaries j1 and

j2 free. The two free boundaries appear because Ek � 0 is

imposed at both boundaries and because j0 is externally imposed.

In summary, the gap structure is described in terms of the

following five dimensionless parameters:

j0 ; J0=�VB=2p�; �43�

ĥp ; hp=vp / LXV
3=2B21=2; �44�

h21
c / RC

c=vp

/ �RC=rLC�
����������
B=V

p
; �45�

D' � D'=�c=vp� / D'�VB�1=2; �46�

mec3

e2vp

/ �VB�21=2: �47�

It is important that j0 is a free parameter in this paper, because it

can be determined only from a global condition on the current

circuit (e.g. Shibata 1997). It is also noteworthy that the curvature

parameter hc comes into the system in two ways: one is in

determining the Goldreich±Julian distribution, A < �vpRc=c�21 in

equation (25), and the other is in the efficiency of the g -ray

production rate in equations (32) and (33). The fifth parameter,

mec
3/(e2vp), is necessary when we compute the terminal Lorentz

factor from Ek. In other words, equation (5) gives

G�j� � 3

2

mpc3

e2vp

vpRc

c

� �2

Ek�j�1 1024

" #1=4

: �48�

G, and hence the fifth parameter, appears only in equations (32)

and (33).

The gap structure is seemingly described by the six parameters

J0, V, B, LX, Rc and D'. However, by normalizing hp with plasma

frequency, vp, normalizing x, Rc and D' with c/vp, and

normalizing j0, n^ and g^ with their Goldreich±Julian values,

we can understand that the freedom reduces from six parameters

to five, that is the solutions are characterized only by the five

parameters (43)±(47). For example, instead of doubling LX, we

can obtain the same six equations and the same eight boundary

conditions by changing V! ���
2
p

V and B! B=
���
2
p

. On these

grounds, we adopt these reasonable normalizations to investigate

the physical properties of the gap.

4 R E S U LT S

In this section, we investigate how the solutions depend on j0, hÃ p,

RC/(c/vp), and, D'. We do not consider the dependence on the

fifth parameter, mec
3/(e2vp), to keep the normalization of j=x �

vp=c unchanged.

4.1 Dependence on current density

To grasp the rough features, we first show some examples of the

solutions of Ek(j) for several values of the `first' parameter j0 (see

equation 43). In Fig. 4, the dotted, solid, and dashed lines

correspond to j0 � 0:239, 0.1 and 0.01, respectively. Other

parameters are fixed as V2 � 1:0, m30 � 1:0, L33 � 1:0,
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D8 ; D'=108 cm � 1:0, and RC � 0:5rLC, so that the remaining

three parameters hÃ p, rLC/(c/vp) and D' are not changed at all (see

equations 44±46).

For very small j0, the n1 2 n2 term in equation (20) does not

contribute. Moreover, unless the gap half-width H=2 < j2=2

becomes comparable to or greater than D' � 6:25 �
104D8

�����������
V2B5

p � 8:29 � 104; the term 2w=D2
' is negligible. As a

result, equation (20) gives approximately a quadratic solution,

Ek�j� � Ek�0�2 �A=2�j2; �49�

which is represented by the dashed line in Fig. 4.

However, as j0 increases, Ek(j ) deviates from the quadratic

form to have a `brim' at the boundaries. Finally, at a certain value

j0 � jcr, the derivative of Ek vanishes at the boundaries. In the case

of V2 � 1:0, m30 � 1:0, L33 � 1:0 and D8 � 1:0, jcr equals 0.239,

for which the solution is represented by the dotted line in Fig. 4.

Above the critical current density, jcr, there are no solutions

satisfying the eight boundary conditions presented in Section 3.2

(see fig. 2 of Hirotani & Okamoto 1998).

It will also be useful to describe the Lorentz factor G(j ), which

is related toEk(j ) by equation (48). The results are presented in

Fig. 5; the parameters are the same as we have chosen in Fig. 4. As

Fig. 5 indicates, the typical values of G become 107.4 in most parts

of the gap, except the case when j0 is very close to jcr. It is

noteworthy that e^s with G , 107:4 produce g-ray photons of

energy ,0:5hnc � 3hcG3=�8pRc� < 3 GeV, which most effectively

collide with sub-keV photons to materialize as pairs. This result is

q 1999 RAS, MNRAS 308, 54±66

Figure 4. Examples of longitudinal electric field Ek(j ). The dotted, solid and dashed lines represent the solutions corresponding to j0 � 0:239, 0.1 and 0.01,

respectively. Other parameters are fixed at V2 � 1:0, m30 � 1:0, D8 � 1:0 and L33 � 1:0 throughout the gap. The real distance from the null surface is related

to j as x � 1:2 � 103j cm.

Figure 5. Examples of the Lorentz factor G(j ). The solid, dashed and dotted lines correspond to the same parameters chosen in Figs 3 and 4.

x � 1:2 � 103j cm.
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consistent with the discussion in Section 2.3, in which we justified

the grey approximation of g-ray spectra.

Let us devote a little more space to examining particle and g-

ray fluxes. First, examples of log10 n1 and log10 n2 are shown by

thick and thin curves, respectively, in Fig. 6. Parameters are

chosen to be the same as in Figs 4 and 5. We can easily see that

particles distribute symmetrically with respect to j � 0 in the

sense that n1�j� � n2�2j�; this is because the set of equations has

symmetry when the two-dimensional effect caused by the D' term

is negligible.

Secondly, examples of log 10g1 and log10 g2 are shown in

Fig. 7. The thick curves denote the fluxes of g1, while the

thin curves denote those of g2. g -ray distribution is also

symmetric with respect to j � 0. We can also see from Fig. 7

that each e1/e2 produces Ng ; g1=n1 , 103 g-ray photons via

curvature radiation. One of these ,103 g-ray photons collides

with a soft X-ray photon to materialize as a pair.

Let us briefly mention why such an active gap is maintained

stationarily when a global current circuit (Fig. 1), which is closely

related to the spin down of the star as described in Section 1, is

realized. Seemingly, it appears as if that the discharges add

negative (or positive) charges to the negative (or positive) side and

act to narrow the gap to turn it off. Nevertheless, the negative

charges that have migrated to the negative side of the boundary

�j � j1� will continue to flow toward the star by a small-amplitude

residual Ek outside the gap, as a part of the global current system.

In fact, the same number of electrons are extracted along field

lines at higher latitudes to close the current circuit. In the same

manner, positive charges flow outwards outside the gap. In other

words, an active steady gap in which pair and g -ray production
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Figure 6. Examples of log10 n1(j ) (thick curves) and log10 n2(j ) (thin curves). The solid, dashed and dotted lines correspond to j0 � 0:1, 0.01 and 0.239,

respectively. x � 1:2 � 103j cm.

Figure 7. Examples of log10 g1(j ) (thick curves) and log10 g2(j ) (thin curves). The solid, dashed and dotted lines correspond to j0 � 0:1, 0.01 and 0.239,

respectively. x � 1:2 � 103j cm.
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proceeds is maintained around an aligned rotator, provided that a

global current circuit closes in the context of an active pulsar wind

accelerator.

4.2 Dependence on the pair-production mean free path

In this subsection, we are concerned with the dependence of the

solutions on the second parameter ĥp / LX, which is inversely

proportional to the pair-production mean free path. In Fig. 8 we

present the solutions of Ek(j). The solid, dashed and dotted lines

correspond to L33 � 1:0, 0.3 and 0.1, respectively. Other

parameters are fixed as j0 � 0:1, V2 � 1:0, m30 � 1:0, D8 ;
D'=108 cm � 1:0 and RC � 0:5rLC, so that the three parameters

j0, rLC/(c/vp) and D' remain unchanged (see equations 44 and

45).

It is plain from Fig. 8 that the longitudinal electric field

increases with decreasing X-ray luminosity. The reasons are

twofold. First, Ek increases with increasing gap width, H ;
j2 2 j1; except when j0 is very close to jcr, because equation (49)

gives

Ek�0� � AH2

8
: �50�

Secondly, H increases with increasing pair-production mean free

path, which is inversely proportional to the X-ray luminosity.

The results of H versus j0 and L33 are summarized in Fig. 9,

which displays one of the two main conclusions of this paper. The

solid line indicates H versus j0 for L33 � 1:0, while the dashed and

dotted lines are for L33 � 0:1 and 0.01, respectively. Other

parameters are fixed at V2 � 1:0 and m30 � 1:0. As we have

discussed in the paragraph above, H increases with decreasing L33.

In particular, for a less luminous X-ray radiation field

�L33 , 0:01�, the gap width becomes comparable to the light

cylinder radius. One may also notice that H increases with j0. This

is because Ek(j ) has small gradients at j=j1 and j2 for large

values of j0 to form a `brim', which enlarges the gap width to

some extent.

A few further remarks should be made concerning how H is

q 1999 RAS, MNRAS 308, 54±66

Figure 8. Longitudinal electric field Ek(j) in the case when j0 � 0:1, V2 � 1:0, m30 � 1:0 and D8 � 1:0. The solid, dashed and dotted lines represent the

solutions corresponding to L33 � 1:0, 0.3 and 0.1, respectively. x � 1:2 � 103j cm.

Figure 9. H/rLC versus log10 j0. The solid line describes H(j0) for

L33 � 1:0, while the dashed and dotted lines are for L33 � 0:1 and 0.01,

respectively. The filled circle indicates the point where j0 coincides with

jcr, above which no solutions exist.

Figure 10. log10 Vgap[V] vs. log10 j0. The solid line describes Vgap(j0) for

L33 � 1:0, while the dashed and dotted lines are for L33 � 0:1 and 0.01,

respectively. The filled circle indicates the point where j0 coincides with

jcr, above which no solutions exist.
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related to hÃ p. The gap width H ; j2 2 j1 is adjusted so that a

single e1/e2 produces copious g-ray photons (of number Ng) one

of which materializes as a pair on average. Therefore, the

probability of a g-ray photon materializing within the gap, N21
g ,

must coincide with the optical depth for absorption, H/lp, where

lp ; c=ĥp is the dimensionless mean free path for pair

production. Therefore, we obtain

H � lp=Ng: �51�
Here, lp is inversely proportional to the X-ray luminosity (L33).

For example, Ng , n1�j2�=g1�j2� , 103 for L33 � 1:0 and j0 �
0:1 (Figs 6 and 7). In this case, equation (51) yields H ,
5 � 107=103 , 5 � 104; which is consistent with the figures.

Equations (32) and (33) show that Ng depends on curvature

radius and the gap width in the following way:

Ng < hcH <
16pe2

9vphRc

G�0�H �52�

/ 16pe2H

9vphRc

3

2

mpc3

e2vp

vpRc

c

� �2

Ek�0�
" #1=4

: �53�

Combining (50)±(53), we obtain

H / ĥ22=5
p

vpRc

c

� �3=10
mpc3

e2vp

� �21=10

: �54�

This is an analytic expression relating H and hÃ p.

Let us now develop the argument on H into how much voltage

is dropped in the gap. The voltage drop, Vgap, is calculated by

integrating Ek along a field line from j � j1 to j2. The results are

summarized in Fig. 10, which shows another main result of this

paper. The solid line describes Vgap(j0) for L33 � 1:0, while the

dashed and dotted lines are for L33 � 0:1 and 0.01, respectively.

Other parameters are fixed at V2 � 1:0 and m30 � 1:0.

What is most important is that Vgap is sufficiently small

compared with the available electromotive force (,1016 V�
produced on the spinning neutron star surface when the back-

ground X-ray luminosity is as high as LX � 10,32233 erg s21. In

other words, Vgap is less than 5 � 1014 V when LX is greater than

1032 erg s21. However, when the X-ray luminosity is as low as

LX � 1031 erg s21; Vgap reaches 3 � 1015 V as a result of the large

gap width, which is comparable with rLC.

The dissipated power per unit cross-section in the gap,

Vdrop � j0, increases linearly with j0 if j0 ! jcr. However, the

power saturates at j0 < jcr. For example, the power becomes

<1:4 � 1016 W m22 at j0 � jcr for L33 � 0:01.

4.3 Dependence on curvature radius

In this subsection, we investigate how the gap structure depends

on the curvature radius, RC, the third parameter (see equation 45).

We fix all the other parameters such that j0 � 0:1, and

V2 � B5 � D8 � L33 � 1:0.

In Fig. 11, we present the results of Ek(j ); the solid line

corresponds to the case of RC � 0:5rLC, while the dashed and

dotted lines correspond to RC � 0:4rLC and 0.6rLC, respectively.

The larger the curvature radius is, the larger H becomes. This is

because the increased curvature radius enables reduced g -ray

production, thereby enlarging the width of the gap in which one of

the g -ray photons materializes as a pair. However, H has realtively

weak dependence on Rc, because H increases by only 17 per cent

from the Rc � 0:4rLC case to 0.6rLC one. As a result, Ek�0� <
�A=2�H2 / H2=Rc slightly increases with decreasing Rc.

4.4 Dependence on transfield thickness

In the previous sections we have considered the case of D8 � 1:0,

which gives roughly symmetric solutions with respect to the null

surface j � 0. In this subsection, we investigate the case of

smaller D8, which reduces the fourth parameter, D' (see equation

46). In Fig. 12, we show the distribution of Ek(j). The solid,

dotted and dashed lines represent the solutions corresponding to

D8 � 1:0, 0.3 and 0.1, respectively. Other parameters are fixed at

j0 � 0:1, V2 � B5 � L33 � 1:0andRC � 0:5rLC.

For D8 � 0:1, the solution is no longer symmetric and the peak

shifts to the positive j direction. However, Vgap decreases with
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Figure 11. Longitudinal electric field Ek(j ) in the case when j0 � 0:1, V2 � B5 � D8 � L33 � 1:0. The dashed, solid and dotted lines represent the solutions

corresponding to RC � 0:4, 0.5 and 0.6rLC, respectively. x � 1:2 � 103j cm.
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decreasing D8. This is because 2w=D2
'�. 0� cancels the term

2Aj in the region j . 0 for small D'. The reader may notice that

2f vanishes at j � j1 and increases with j to contribute in

equation (20) at larger j 2 j1.

It is interesting to note that the gap structure qualitatively

approaches that presented in CHR as D' decreases. In other

words, the case of D8 � 0:1 in Fig. 12 indicates the following two

facts: (1) Ek becomes almost constant in the central region and (2)

the gap extends from just inside the null surface to the light

cylinder, owing to the existence of a wall with vanishing potential

�F � 0� in the transfield direction.

5 D I S C U S S I O N

In summary, we have developed an one-dimensional model for an

outer gap accelerator immersed in a low-luminosity X-ray field

�LX , 1033 erg s21�. In such a low-luminosity X-ray field, the

terminal Lorentz factor exceeds 107; this leads to a g-ray

production via curvature radiation. Owing to the symmetric

distribution of the Goldreich±Julian charge density about the null

surface, the gap structure also becomes symmetric to this surface

if the gap transfield thickness (D') is greater than the longitudinal

width (H). However, if D' becomes comparable to H, the

symmetry breaks down and the gap structure approaches the

model of CHR(1986a,b). A typical e1 or e2 produces 103 g-ray

photons that can materialize as pairs. As the background radiation

field becomes less luminous, the pair-production mean free path,

and hence H, increases. The most important conclusion is that the

voltage drop in the gap is only 3 � 1013 V for LX � 1033 erg s21

and 3 � 1014 V for LX � 1032 erg s21. However, when the X-ray

luminosity is as low as LX � 1031 erg s21, the voltage drop

becomes 3 � 1015 V, which corresponds to about 30 per cent of the

available EMF produced on a spinning neutron star surface, as a

result of the large gap width, which is comparable with rLC.

5.1 Maximum current density

Let us discuss why the maximum allowed current density, jcr, is

small compared with the typical Goldreich±Julian (GJ) current

density, V|B|/(2pe), where |B| refers to the absolute value of the

field strength. If the local GJ charge density rGJ � VBz=�2pc� is

filled by the charged particles produced via g ±g collisions, the

gap vanishes, or equivalently dEk/dj and hence Ek vanishes. Note

that Bz/|B| is small in the gap, which is located around the null

surface where Bz vanishes. It follows that only a small fraction of

the typical GJ current density results in dEk=dj � 0 at the

boundaries of the gap. However, in this case Ek is not screened out

in the gap, because jn1 2 n2j , j2 Ajj holds in equation (20).

The actual current density is not, however, limited by the

argument above, if we release to some extent the boundary

conditions (38) and (42), by which we impose no particle injection

from the outside of the gap. Let us assume, for example, that some

electrons are injected into the gap from the light cylinder side

toward the star; we impose n2�j2� � 0:2j0, say, instead of

equation (42). Then equation (31) gives n1�j2� � 0:8j0, which

yields n1�j2�2 n2�j2� � 0:6j0. This small factor (0.6 in this case)

reduces the cancellation effect on the right-hand side of equation

(20). Therefore, larger jcr could be obtained if particles were

injected from the outside of the gap. Such a case will be discussed

in detail in a subsequent paper, in connection with a `dead' gap in

which no pair production takes place with non-vanishing Ek.

5.2 Comparison with Chen et al.

We next discuss the essential differences from CHR. CHR

hypothesized an outer gap in the region where no g -rays

penetrate. The single-signed curvature of field lines results in an

exponential growth of particle number densities in the z

(transfield) direction. As a result, the gap is supposed to be

formed in a geometrically thin shape above the last open field

lines. In another word, z dependence is essential in CHR.

On the other hand, in the present paper, it is the null surface

(rather than the z dependence) that is essential for the formation of

the gap. In other words, the inversion of the sign of rGJ along the

field lines leads to gap closure in the sense that dEk=dj . 0 at

j , 0 and dEk=dj , 0 at j . 0. When n1 2 n2 contributes in
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Figure 12. Longitudinal electric field Ek(j ) in the case when j0 � 0:1, D8 � 1:0 and L33 � 1:0. The solid, dotted and dashed lines represent the solutions

corresponding to D8 � 1:0, 0.3 and 0.1, respectively. x � 1:2 � 103j cm.
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equation (20), the basic mechanism of this Ek closure still works.

In other words, the gap closes without the tertiary pairs, which are

hypothesized in CHR, by virtue of rGJ distribution. On these

grounds, transfield structure does not play a primary role in the

gap closure problem; therefore, we neglect such details and focus

attention on the longitudinal structure of the gap in the present

paper.

5.3 Validity of assumptions

First, we demonstrate that non-relativistic e^s, which are turning

back owing to electrostatic acceleration shortly after the birth, can

be really neglected in the Poisson equations (2). Figs 4, 8, 11 and

12 indicate that Ek . 10 holds in most parts of the gap. It follows

that the turning length becomes

G0mec2

ejdF=dxj , 106V
21=2
2 B

21=2
5

Ek
10

� �21 G0

104

� �
cm; �55�

which is much smaller than the gap width �, 108 cm�. The ratio of

the charge of the non-relativistic e^s and that of relativistic ones is

of the order of the turning length divided by the gap longitudinal

width. It should therefore be concluded that the non-relativistic

e^s can safely be neglected in the Poisson equation.

Secondly, let us demonstrate that the the synchrotron radiation

can be self-consistently neglected compared with curvature

radiation in our present model. The evolution of the dimensionless

momentum of a particle (p ; P=mec, jpj �
��������������
G2 2 1

p
) and pitch

angle (x) is described by

d

dt
�p sin x� � 2

1

t
p2 sin 3x; �56�

d

dt
�p cos x� � 1

t
^f �j�2 p2 sin 2x cos x
� �

; �57�

where t=G ; 3mec=�2r2
0B2G� expresses the synchrotron cooling

time and f refers to the dimensionless electrostatic acceleration,

f ;
3e

2r2
0B2

dF�x�
dx

� 2:7 � 1010 jdF=dxj
V=m

� �
B22

5 : �58�

In equation (57), we choose the positive (or negative) sign for e1

(or e2). The dimensionless coordinate j and the time t are related

by

dj

dt
� vp

p cos x�������������
1 1 p2

p : �59�

For simplicity, we assume both f and B to be constant for j.

As an example, we compare the trajectories of two cases: (1)

jdf=dxj � 103 esu (electrostatic units) and B � 105 G, and (2)

jdf=dxj � 103 esu and B � 106 G. Assuming that a pair is created

at j � 0 with positive initial momenta p � 7 � 103, we present

their trajectories in Fig. 13. The ordinate expresses the long-

itudinal momentum, p cos x . As can be seen from this figure, we

can barely distinguish between these two cases. That is, on global

scales �jjj , 0:1rLC�, there is no difference in the longitudinal

motion between B � 105 G and 106 G cases. However, if we

magnify the place of birth �j � 0�, the trajectories differ between

these two cases (Fig. 14). In other words, for a weak magnetic

field �B � 105 G�, the trajectory of a turning-back e2 becomes

quadratic owing to Ek deceleration. However, for a strong

magnetic field (B=106 G), it deviates from the quadratic form

and turns back quickly because of synchrotron loss. In other

words, it is the Ek acceleration that induces the pitch angle

evolution in the initial stage �t , t=G� for weak B cases, while

synchrotron loss contributes significantly to the evolution for

strong B cases. The pitch angle evolution along the path lengths is

demonstrated in Fig. 15; the ordinate is x . It is plain from this

figure that the larger B is, the faster the pitch angle evolves, as

expected.

In the later stage �t @ t=G�, x (or p 2 x) evolves as G0/G owing

to Ek acceleration for weak B cases, while it becomes smaller than

G0/G for strong B cases, where G0 is the initial Lorentz factor (at

j � 0 in this case). After the particles attain the terminal Lorentz

factor, x ceases to evolve, because synchrotron radiation does not

alter x owing to the relativistic beaming effect. As the initial e^

energy, G0mec
2, cannot greatly exceed several GeV, which is the

typical energy of g-ray photons radiated by e^s moving along a

curved field line with G , 107:5, Ek acceleration keeps sin x
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Figure 13. Trajectories of an e^ pair. The abscissa is x/rLC, while the ordinate is the momentum along the field lines, p cosx . The solid lines correspond to

the trajectories of e^ in the case when B � 105 G, while the dashed lines, which almost coincide with the solid ones, are for B � 106 G. Particles are assumed

to be created at x � 0 with initial momentum p � 7 � 103 and pitch angle x � p=4.
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below G0=G < 1024. It follows that

Pcurv

Psync

� Rg=sin x

Rc

� �2

< 103 G0

103:5

� �22 G

107:5

� �4

V2
2B22

5 ; �60�

where Rg is the synchrotron gyration radius. Equation (60)

indicates that the synchrotron process can be self-consistently

neglected in our present model. However, this is not to deny

the possibility that there exists another branch of solutions in

which the synchrotron process plays a major role in g-ray

production.

Thirdly and finally, we show that inverse Compton (IC)

scatterings are negligible compared with curvature radiation in

g-ray radiation in g-ray production (or equivalently in the

radiation reaction), when the X-ray radiation field is as low as

LX < 1031233 erg s21. To see this, let us take the ratio of Pcurv/PIC,

where Pcurv/c and PIC/c denote the radiation reaction forces

resulting from curvature radiation and IC scatterings, respectively.

By estimating the typical curvature radius of the magnetic field

lines to be 0.5rLC, we obtain

Pcurv

c
� 8e2G4

3r2
LC

� 6:82 � 10236V2
2G

4: �61�

The radiation reaction force resulting from IC scatterings is given

by

PIC

c
< cNXsKN

Gmec2

c
, cNXsT

Gmec2

c

� 8:48 � 10218G
UX

104 erg cm23

� �
mec2eX

0:4 keV

� �21

; �62�

where

NX � UX

eX

� 1:56 � 1013 UX

104 erg cm23

� �
mec2eX

0:4 keV

� �21

cm23

�63�
is the number density of X-ray photons evaluated at an averaged
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Figure 14. Magnified graph of the trajectories at the place of birth �x � 0�. The solid lines correspond to the trajectories of e^ in the case when B � 105 G,

while the dashed lines are for B � 106 G.

Figure 15. Pitch angle evolutions of a pair of e^. The abscissa is the path length of each particle, which is magnified at the birthplace of the pair �x � 0�.



66 K. Hirotani and S. Shibata

photon energy mec
2eX; sKN and sT are the Klein±Nishina and

Thomson cross-sections, respectively.

Combining the foregoing equations, we have

Pcurv

PIC

. 0:804
G

106

� �3

V2
2

UX

104 erg cm23

� �21 eX

0:4 keV

� �
: �64�

It follows that unless V2
2 � �UX=104 erg cm23�21 is much smaller

than unity, the curvature drag is the force that causes the saturation

of the Lorentz factor of the accelerated e^s. On the other hand, if

UX is much greater than 104 erg cm23 (as for the Crab pulsar), IC

scatterings become important. These cases will be investigated in

Paper II.
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A P P E N D I X A : D E R I VAT I O N O F

O N E - D I M E N S I O N A L C O N T I N U I T Y

E Q UAT I O N S F O R g - R AY P H OT O N S

We derive equations (11) and (12) in this appendix. When g -ray

photons are produced by curvature radiation, the one-dimensional

Boltzmann equations for the g-ray photons can be written as

c
kg

jkgj


x
G�x; kg� � 2 hpG�x; kg�

1
16pe2

9hRC

�1

21
dpGd kg 2

3hG3

4prLC

p

jpj
� �

� �N1 1 N2�; �A1�
where G(x, kg) refers to the distribution function of g-ray photons.

We introduce the g-ray production rate as the second term on the

right-hand-side. In the integrand, all the g-ray photons are

assumed to be produced at hnc < 3 GeV; therefore the d-function

appears.

Integrating equation (A1) over g-ray momentum ranges of

[21, 0] and [0, 1], we obtain

dG1

dx
� 2khp1lG1 1

16pe2

9hRC

GN1; �A2�

dG2

dx
� khp2lG2 2

16pe2

9hRC

GN2; �A3�

where

khp1l ;
�1

0
hp�jkgj�G�x; kg� dkg

�1

0

G�x; kg� dkg; �A4�

khp2l ;
� 0

21 hp�jkgj�G�x; kg� dkg
�0

21
G�x; kg� dkg; �A5�

G1(x) and G2(x) are the spatial number density of g-ray photons

propagating outwardly and inwardly, respectively. In other words,
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In general, the coefficients khp1l and khp2l must be solved

simultaneously together with G(x,kg). However, the g-ray

absorption (i.e. pair production) probability will not depend on

the direction of g-ray photons for an isotropic soft photon bath.

We thus assume khp1l � khp2l � khpl < 0:2sTNXc, which yields

equations (11) and (12).
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